Leetcode 94. Binary Tree Inorder Traversal

Description:

For example:
Given binary tree [1,null,2,3].

   1
    \
     2
    /
   3

return [1,3,2].

Thinking:

Nothing special except we should change the order of that we add root.val to the List.

Steps:

  • Check if the current node is empty / null
  • Recursion or iteration?
  • Do we need create helper function?
  • How to recursion? Traverse the left subtree by recursively calling the in-order function. Display the data part of the root (or current node). Then traverse the right subtree by recursively calling the in-order function.
  • Determin the return condition.

Code:

Iteration:
public class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        if(root == null) return new ArrayList<Integer>();
        List<Integer> result = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        TreeNode current = root;
        while(!stack.isEmpty() || current != null){
            while(current != null){
                stack.push(current);
                current = current.left;
            }
            current = stack.pop();
            result.add(current.val);
            current = current.right;
        }
        return result;
    }
}
Recursion(with helper):
public class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        inorderTraversalhelper(root,result);
        return result;
    }
    private void inorderTraversalhelper(TreeNode root,List<Integer> result){
        if(root == null) return;
        inorderTraversalhelper(root.left, result);
        result.add(root.val);
        inorderTraversalhelper(root.right,result);
    }
}
Recuraion(no helper):
public class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        if(root == null) return new ArrayList<Integer>();
        List<Integer> result = new ArrayList<Integer>();
        List<Integer> left = inorderTraversal(root.left);
        List<Integer> right = inorderTraversal(root.right);
        result.addAll(left);
        result.add(root.val);
        result.addAll(right);
        return result;
    }

}

Conclusion:

recursion(no helper) is a little bit slower than with helper, since result.addAll()takes O(n).

results matching ""

    No results matching ""